Diagnostic Yield of Whole Exome Sequencing in Pediatric Dilated Cardiomyopathy

نویسندگان

  • Pamela A. Long
  • Jared M. Evans
  • Timothy M. Olson
چکیده

Dilated cardiomyopathy (DCM) is a heritable, genetically heterogeneous disorder characterized by progressive heart failure. DCM typically remains clinically silent until adulthood, yet symptomatic disease can develop in childhood. We sought to identify the genetic basis of pediatric DCM in 15 sporadic and three affected-siblings cases, comprised of 21 affected children (mean age, five years) whose parents had normal echocardiograms (mean age, 39 years). Twelve underwent cardiac transplantation and five died with severe heart failure. Parent-offspring whole exome sequencing (WES) data were filtered for rare, deleterious, de novo and recessive variants. In prior work, we reported de novo mutations in TNNT2 and RRAGC and compound heterozygous mutations in ALMS1 and TAF1A among four cases in our cohort. Here, de novo mutations in established DCM genes-RBM20, LMNA, TNNT2, and PRDM16-were identified among five additional cases. The RBM20 mutation was previously reported in familial DCM. An identical unreported LMNA mutation was identified in two unrelated cases, both harboring gene-specific defects in cardiomyocyte nuclear morphology. Collectively, WES had a 50% diagnostic yield in our cohort, providing an explanation for pediatric heart failure and enabling informed family planning. Research is ongoing to discover novel DCM genes among the remaining families.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Whole exome sequencing identifies a causal RBM20 mutation in a large pedigree with familial dilated cardiomyopathy.

BACKGROUND Whole exome sequencing is a powerful technique for Mendelian disease gene discovery. However, variant prioritization remains a challenge. We applied whole exome sequencing to identify the causal variant in a large family with familial dilated cardiomyopathy of unknown pathogenesis. METHODS AND RESULTS A large family with autosomal dominant, familial dilated cardiomyopathy was ident...

متن کامل

Whole Exome Sequencing Reveals a BSCL2 Mutation Causing Progressive Encephalopathy with Lipodystrophy (PELD) in an Iranian Pediatric Patient

Background: Progressive encephalopathy with or without lipodystrophy is a rare autosomal recessive childhood-onset seipin-associated neurodegenerative syndrome, leading to developmental regression of motor and cognitive skills. In this study, we introduce a patient with developmental regression and autism. The causative mutation was found by exome sequencing. Methods: The proband showed a gener...

متن کامل

Whole Exome Sequencing Identifies a Troponin T Mutation Hot Spot in Familial Dilated Cardiomyopathy

Dilated cardiomyopathy (DCM) commonly causes heart failure and shows extensive genetic heterogeneity that may be amenable to newly developed next-generation DNA sequencing of the exome. In this study we report the successful use of exome sequencing to identify a pathogenic variant in the TNNT2 gene using segregation analysis in a large DCM family. Exome sequencing was performed on three distant...

متن کامل

Role of Whole-exome Sequencing in Phenotype Classification and Clinical Treatment of Pediatric Restrictive Cardiomyopathy

BACKGROUND Restrictive cardiomyopathy (RCM) is the least common cardiomyopathy in which the walls are rigid and the heart is restricted from stretching and filling properly. Cardiac troponin I (cTnI) mutation-caused myofibril Ca2+ hypersensitivity has been shown to be associated with impaired diastolic function. This study aimed to investigate the linkage between the genotype and clinical thera...

متن کامل

Whole exome sequencing identifies a KCNJ12 mutation as a cause of familial dilated cardiomyopathy

Dilated cardiomyopathy (DCM) is characterized by left ventricular dilation, and is associated with systolic dysfunction and increased action potential duration. Approximately 50% of DCM cases are caused by inherited gene mutations with genetic and phenotypic heterogeneity. Next generation sequencing may be useful in screening unknown mutations in such cases.A family was identified with DCM, in ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2017